
OCTOBER 2019

USER'S MANUAL

PMS-970 Programmable Meter

Firmware: from v.5.00

APLISENS S.A., 03-192 Warsaw, ul. Morelowa 7 tel. +48 22 814 07 77; fax +48 22 814 07 78 www.aplisens.pl, e-mail: aplisens@aplisens.pl

Symbols used

Symbol	Description				
\triangle	Carefully follow the information in this document to ensure safety and full functionality of the device.				
i	Information particularly useful for the installation and use of the device.				
EX	Information particularly useful for the installation and use of the Ex type device				
X	Information on the disposal of used equipment.				

BASIC REQUIREMENTS AND SAFETY OF USE

- The manufacturer takes no liability for damage resulting from incorrect installation of the device, neglecting to keep the device in proper technical condition, and using the device for purposes other than intended.
- Installation should be conducted by qualified personnel, authorized for installation of electrical equipment and measuring devices. The installer is responsible to conduct the installation according to this manual as well as laws and standards of safety and electromagnetic compatibility applicable for this kind of installation.
- In any installation equipped with measuring devices, there is an injury hazard from compressed agent in case of a leak. Follow all safety requirements during the installation, use, and inspection of the display.
- In case of malfunction, disconnect the device and return it to the producer or an authorized service unit for repair.

In order to minimize the possibility of malfunction and the resulting hazard to personnel, avoid installing the device in dangerous environment where there is a possibility of the following:

- mechanical impact, excess shock and vibration.
- excess temperature fluctuation.
- steam condensation, dusting, icing.

Installation of intrinsically safe devices must be conducted very carefully, following all standards and laws applicable for installations of this kind.

Changes made to the production may be introduced before the paper version of the user's manual is updated. The up-to-date user's manual is available on the manufacturer's website: www.aplisens.pl.

TABLE OF CONTENTS INTRODUCTION......2 1. 2. 3. SET LISTBłąd! Nie zdefiniowano zakładki. TRANSPORT AND STORAGE......3 4 4.1. 4.2. WARRANTY3 5. 6. STRUCTUREBład! Nie zdefiniowano zakładki. INSTALLATION......4 7. 8. CONNECTING6 TECHNICAL PARAMETERS......15 9. OPERATION......17 10. 10.5. Serial communication 22 11. REVISION HISTORY29 **12**. 12.1. PERIODICAL INSPECTION 29 SCRAPPING AND DISPOSAL29 13.

1. INTRODUCTION

The subject of this instruction manual is the PMS-970 programmable meter.

The manual includes data, hints, and recommended action for installation and usage of the meter, as well as troubleshooting tips.

2. SAFETY

- Read this instruction carefully prior to, installation, startup, or any other work.
- Installation and maintenance can only by conducted by qualified personnel, authorized to install electrical equipments and measuring devices.

- Use the meter according to its intended use, without exceeding maximum acceptable parameters.
- Prior to assembly or disassembly of the device, be sure to disconnect the power source.
- It is not acceptable to conduct any repair or otherwise tamper with the electronic circuit of the device. Damage assessment and possible repair can only be made by the producer or an authorized unit.
- Do not use the device when it is damaged. If malfunction occurs, disconnect the device.

3. LIST TO CHECK COMPLETENESS OF DELIVERY

Along with the meter, the user receives the following:

- a) Product certificate, functioning as a warranty card;
- b) Declaration of conformity (on customer's request);
- c) Instruction Manual designated "EN.IO.PMS-970"

Positions b), c) are available from the website www.aplisens.pl

4. TRANSPORT AND STORAGE

4.1. Transport

When transported, the meters should be packed in individual and/or group packaging and carried on a covered means of transport. The packaging should be secured against shifting and atmospheric weather effects.

4.2. Storage

The meter should be stored in the manufacturer's packaging, in a covered room, free of vapor and corrosive agents, where temperature and relative humidity do not exceed maximum acceptable limits.

5. WARRANTY

The producer provides warranty under the conditions specified in Product Certificate that works as a warranty card.

Warranty will be void if the device is not used according to its intended use, the user does not follow this instruction manual, the device is handled by unqualified personnel or the meter has been tampered with.

6. CONSTRUCTION

The **PMS-970** meter has two measuring inputs – one 0-20mA current input and one 0-10V voltage input. The current input is equipped with a safety device that protects the measuring resistor from damage. The input current is limited to 40 mA (typically). When the temperature of the measuring resistor falls, the safety device will automatically switch off and the system displays the measurement value again. After the safety device has switched off, the measurement may be slightly less precise for a while (until the system cools down entirely).

The readout can be freely scaled by the user. Readout rounding and filtering grade can also be programmed.

Two versions are available: **PMS-970T** with dual digital/analog display and **PMS-970P** with single, big digit display. 26 point, tricolour LED bargraph (PMS970T version) allows easy judgement of levels and threshold values.

Depending on version, 2 or 4 relay outputs are available. Threshold levels with individual hysteresis and ON/OFF function are user programmed. The special function called "alternate output control" allows optimal control of cascaded pumps.

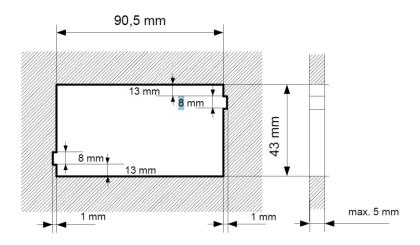
Optionally, the meter can be equipped with an active current output. he range of current change at the output is programmed separately. The RS-485 communication link and the transmitter power output are available as standard option. The meter is available in one universal version of its power system: 20 – 250V AC/DC.

The **PMS-970** is used for adjustment processes e.g. for temperature (heating / cooling) with adjustable delay times for engaging output transmitters, level operation or valve operation.

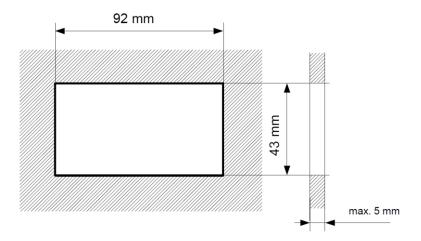
7. INSTALLATION

The device is designed and made in a way that provides maximum safety of use and resistance to interference that occur in a typical industrial environment. For these features to be fully used, the installation of the device should be conducted properly, according to the relevant standards.

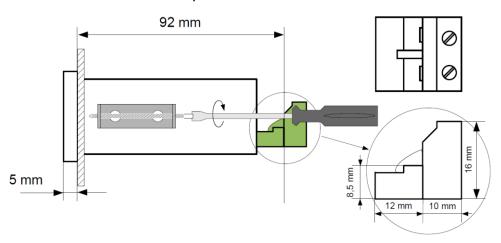
- Prior to installation, read the basic safety requirements on page 3.
- Prior to connecting the device to the electrical system, check if voltage on the electrical system corresponds to the nominal voltage value specified on the device's label.


 Consider the necessity of securing the power clamps against unauthorized access.

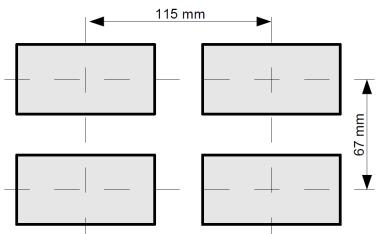
- The device should be installed indoors, in a housing (panel, switchbox) providing proper protection against electrical surges. Metal housing must be grounded according to relevant laws.
- Prior to assembly, disconnect power from the electrical system.
- Prior to switching on the device, carefully inspect if the connections were made correctly.



To install the device, prepare a 90,5 x 43 mm opening in the panel (Pic.7.1, 7.2). The thickness of the material that the panel is made of should not be more than 5mm. While preparing the installation opening, allow for recesses to accommodate catch pawls on both sides of the housing (Pic.7.1, 7.2). Place the device in the opening, inserting it from the front side of the panel, then fix it with holders (Pic. 7.3). Minimum distance between axes of installation openings — resulting from thermal and mechanical working conditions — is 115mm (horizontal axis) and 67mm (vertical axis) (Pic. 7.4).



Pic. 7.1 Recommended installation dimensions



Pic. 7.2 Acceptable installation dimensions

Pic. 7.3 Fixing with holders

Pic. 7.4 Installation of several devices

8. CONNECTING

Clamp no. 3 is the functional grounding clamp. Grounding the clamp is necessary for protection against interference. The clamp is also used for connecting the shields of measuring wires.

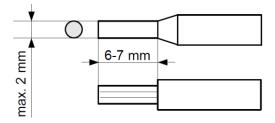
All connection and installation steps must be performed with power disconnected.

Safety precautions

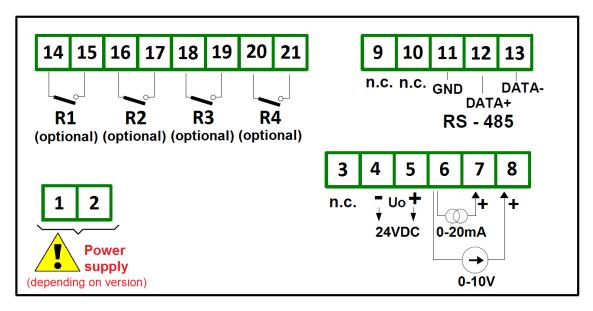
- Installation should be conducted by qualified personnel, authorized to install electrical devices. All available safety requirements must be considered during installation. It is the installer's duty to perform installation according to this instruction manual as well as laws and standards of safety and electromagnetic compatibility, relevant to the type of installation performed.
- The device is not equipped with an external safety cut-out with minimum possible nominal current value (we recommend a bipolar cut-out for nominal current no more than 2A) and a power switch in the vicinity of the device.

If a unipolar cut-out is used, it must be mounted on the phase lead (L).

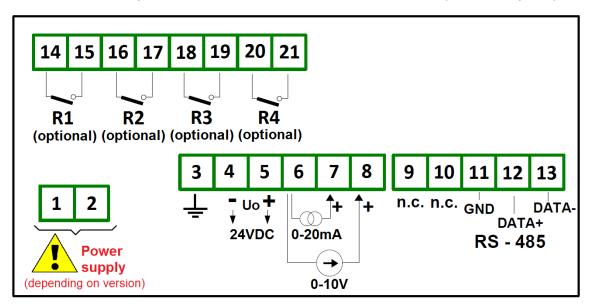
- Select the cross-section of the power cable so that protection of the cable is provided with a fuse from the device's side in case of short-circuit on the cable.
- Cable types must correspond to relevant standards, local laws and regulations.
- To provide protection against accidental short-circuit, the connecting leads should be ended with proper insulated cable ends.
- Tighten the clamp bolts. The recommended torque of tightening is 0,5 Nm. Loose bolts may cause fire or malfunction. Tightening the bolts too much may lead to damage of connections inside the device and breaking the thread..
- If the device is equipped with separable clamps, they should be tucked into proper connectors in the device even if they are not used for any connections.


- Clamps that are not in use (marked n.c.) must not be used to connect any connection leads (e.g. as bridges), since it may cause damage to the device or an electric shock.
- If the device is equipped with housing, shields, and compression glands to protect from water, pay close attention to tighten or compress them properly. When in doubt, consider using additional precautions (shields, canopies, leak stoppers, etc.). Negligent installation may increase the risk of an electric shock.
- Once installation is complete, do not touch the connections when power is on due to a possibility of an electric shock.

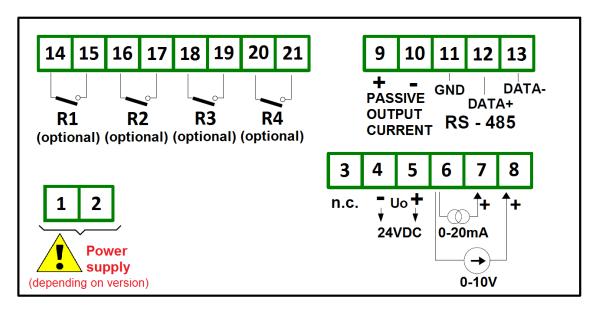
Due to possible significant interference occurring in industrial systems, use adequate precautions that ensure proper operation of the device. Disregarding the following tips may, in certain circumstances, lead to exceeding the levels of electromagnetic disturbance for a typical industrial environment, which in turn may cause incorrect readout on the device.


- Avoid joint (parallel) placement of signal and transmission lines with power lines and lines for operating inductive loads (e.g. contactors). Such lines should cross at right angle.
- Contactors coils and inductive loads should be equipped with counter-interference systems such as RC-type.
- It is recommended to use shielded signal lines. Signal line shields should be grounded at one end of the shielded line only.
- In case of magnetically induced interference, it is recommended to use twinned couples of signal lines (spirals). The spiral (best shielded spiral) should be used for communication of RS-485 serial transmission.
- If the measuring or operating circuits are longer than 30m or leave the building, it is required to install additional safety precautions against overvoltage.
- In case of interference from power supply, it is recommended proper interference eliminators. The connections between the eliminator and the device should be as short as possible and the metal housing of the eliminator should be grounded with the largest area possible. Do not let the leads connected to eliminator output run parallel to interfered lines (e.g. operating circuits for transmitters or contactors).

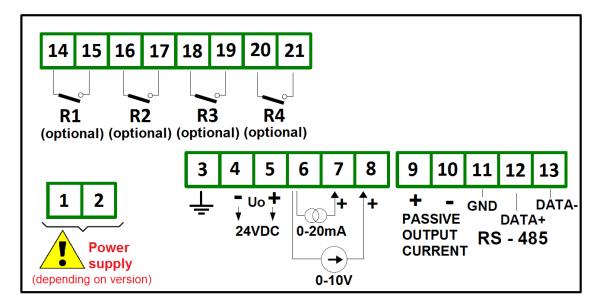
Power supply and measurement signals are connected through screw joints located in the rear part of the device housing.



Pic. 8.1 Insulating the leads and dimensions of cable ends



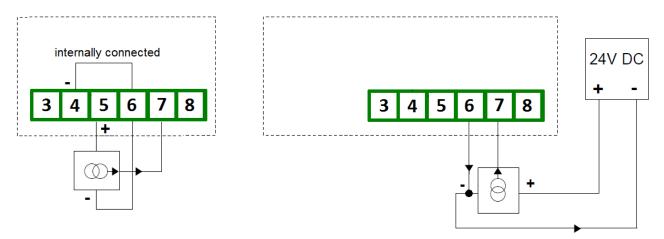
Pic. 8.2 Description of terminals for **OW** standard version (see nameplate)



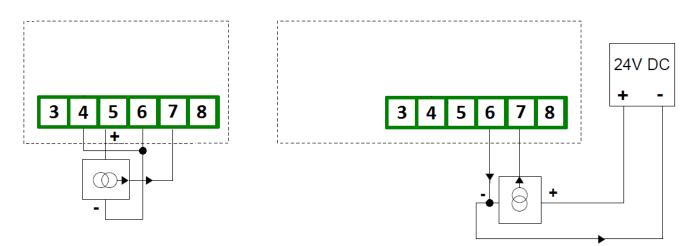
Pic. 8.3 Description of terminals for standard version

Pic. 8.4 Description of terminals for version with additional **OW** passive current output (see nameplate)

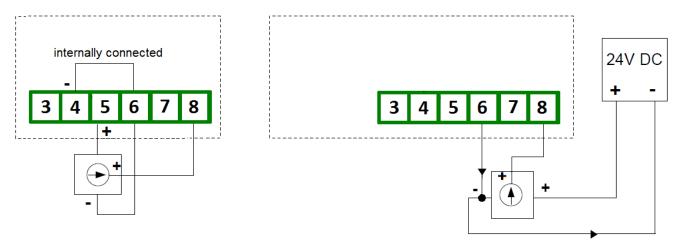
Pic. 8.5 Description of terminals for version with additional passive current output



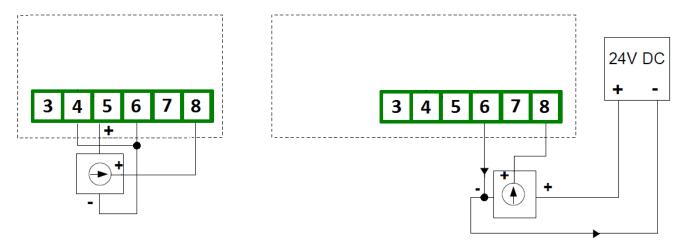
Pic. 8.6 Connection of 2-lead OW current transmitters



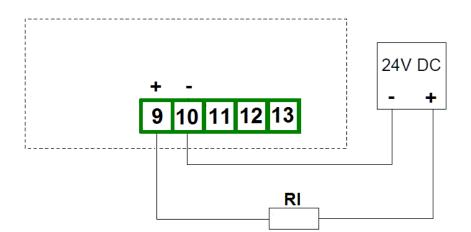
Pic. 8.7 Connection of 2-lead current transmitters



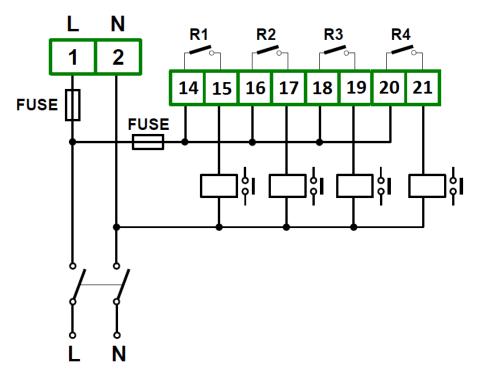
Pic. 8.8 Connection of 3-lead OW current transmitters



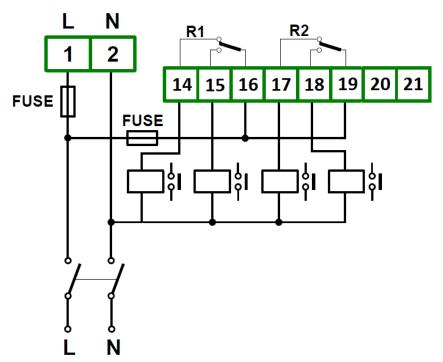
Pic. 8.9 Connection of 3-lead current transmitters



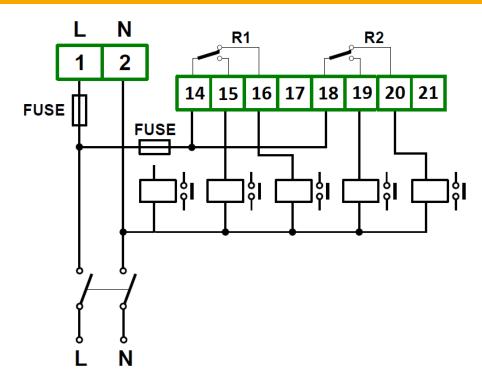
Pic. 8.10 Connection of OW voltage transmitters



Pic. 8.11 Connection of voltage transmitters

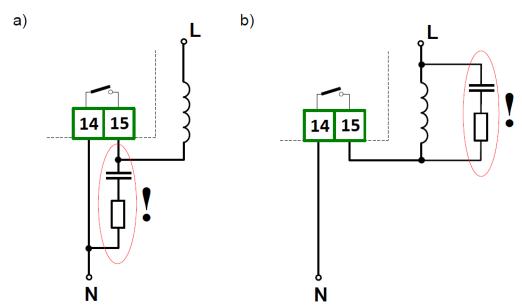


Pic. 8.12 Connection of passive current output



Pic. 8.13 Connection of power supply and 4 transmitters operating loads

Pic. 8.14 Connection of power supply and 2 transmitters operating loads



Pic. 8.15 Connection of power supply and 2 transmitters operating loads -OW version

Transmitter output contacts are not equipped with quench circuit. When using transmitter outputs for switching inductive loads (contactor coils, transmitters, electromagnets, solenoids, etc.) it is required to use an additional quench circuit (typically a 47nF condenser/ min. 250VAC in series with 100R resistor, connected in parallel to engaged inductance). Using a quench circuit results in decreasing the level of interference generated while switching and increasing the durability of transmitter contacts.

Pic. 8.16 Examples of serial connection of quench circuit: to transmitter contacts; b) to inductive load

Tab. 8.1 Terminal assignment table

Connector	Pin number	Symbol	Terminal description	Rating	
POWER	1	L			
SUPPLY 230VAC version	2	N	supply	230V/50Hz	
OPTIONAL:	1				
POWER SUPPLY 24VAC/DC version	2		supply	24V AC/DC	
POWER	1	L/+		20 – 250V	
SUPPLY OW version	2	N/-	supply	AC/DC	
	3	<u>+</u>	functional ground		
SIGNAL INPUT, EXCITATION	4 5	- +	excitation output	24VDC	
OUTPUT	6	0	signal ground		
0011 01	7	mA	current input	20mA	
	8	V	voltage input	10V	
ANALOG OUTPUT,	9 10	4-20mA	analog output	4-20mA	
SERIAL	11	E	RS485 ground		
INTERFACE	12 13	A+ B-	RS485 line		
	14	С	AL1 relay common		
	15	NO	AL1 relay NO		
RELAY	16	С	AL2 relay common		
OUTPUT	17	NO	AL2 relay NO	1A/250VAC	
4P version	18	С	AL3 relay common	17 0200 07 10	
	19	NO	AL3 relay NO	_	
	20	C	AL4 relay common	4	
	21 14	NO C	AL4 relay NO		
	15	NO	AL1 relay common AL1 relay NO	-	
RELAY	16	NC	AL1 relay NC	-	
OUTPUT	17	110	TILI TOTAY INO	+	
2P version	18	С	AL2 relay common	1A/250VAC	
OW version	19	NO	AL2 relay NO	1	
	20	NC	AL2 relay NC		
	21				
	14	NC	AL1 relay NC		
	15	NO	AL1 relay NO		
RELAY	16	С	AL1 relay common		
OUTPUT	17	NC	AL2 relay NC	1A/250VAC	
2P version	18	NO	AL2 relay NO	17/200770	
2. 10101011	19	С	AL2 relay common	_	
	20			_	
	21				

9. TECHNICAL PARAMETERS

CATEGORY	PARAMETER	VALUE	COMMENTS
	accuracy	+/-0.1% FS	
	Temperature coefficient	+/- 100ppm / °C	
INDUIT	Internal resolution	15 bit	
INPUT	Sampling rate	16,6Hz	
	Filter time constant	0-15,36s	
	Noise rejection	>=65dB	f=50Hz
	Range	020mA	-0.1 +21mA
CUDDENT INDUT	Input resistance	<56Ω	
CURRENT INPUT	Max. input current	Internally limited	
	Overvoltage protection level	-0.6+36V=	transil
	Range	010V	-0.05 +10.5V
VOLTACE INDUIT	Input resistance	>=50kΩ	
VOLTAGE INPUT	Overvoltage protection level	-0.6+36V=	transil
	Rating	1A / 250VAC	
	Contact configuration (2P version)	2 x NO/NC	
CONTROL RELAY	Contact configuration (4P version)	4 x NO	
OUTPUT	Open contact withstand voltage	1000VAC	
	Contact life mechanical / electrical	15x10 ⁶ / 10 ⁶	
	Load capacity	250VA	resistive load
	Range	321mA	
	Output voltage range	10-30VDC	
	Accuracy	+/- 0.1%	
ANALOG OUTPUT	Resolution	12 bit	
ANALOG OUTPUT	Temperature coefficient	+/- 100ppm/C	
	Output voltage effect	+/- 20ppm/V	
	Overvoltage protection level	36V	transil
	Refresh rate	30Hz	
	Type	RS485	
	Protocol	MODBUS RTU	
SERIAL	Baude rate	2.4, 4.8, 9.6, 19.2kbps	
INTERFACE	Data bits	8	
	Overvoltage protection level	+7 / -12V	transil
	Voltage	24VDC, +5/-10%	
SENSOD	Current max	25mA	
SENSOR	Current limit	continuous	
EXCITATION	Overvoltage protection level	36V	

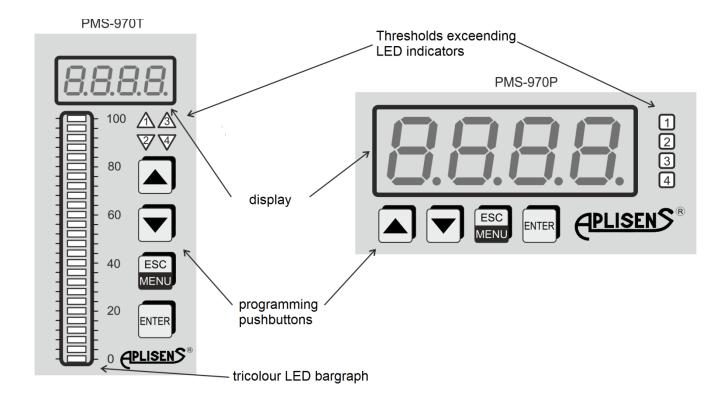
	Voltage - AC 230V version	230VAC +10/-20%	20-250V AC/DC OW version
POWER SUPPLY	- AC/DC 24V version	20-35VDC 18-26VAC	
	- universal version	20-250V AC/DC	OW version
	Power consumption	<6W	
	Digits / Colour	4 / Green LED	
DICDLAY	Digit biobt	7mm	PMS-970T
DISPLAY	Digit hight	20mm	PMS-970P
	Bargraph resolution	26	PMS-970T
	Operating temperature	540°C	
	Storage temperature	-10+70°C	
	Humidity (relative)	10-95%	without condensing
ENVIRONMENTAL	Enclosure protection (front)	IP-65	
	Enclosure protection (rear)	IP-20	
	Pollution degree	2	
	Overvoltage category	II	
	Power supply – other circuits	2300VAC	
ELECTRIC	Relay outputs – other circuits	2300VAC	
ISOLATION	Signac input – functional ground	1000VAC	
	Analog output – signal input	1000VAC	
	RS485 signal input	1000VAC	
	Dimension	48x96x120mm	
	Weight	280g	
MECHANICAL	Panel cut-out	44.5x91mm	
WECHANICAL	Panel thickness	015mm	
	Horizontal spacing	>70mm	axis to axis
	Vertical spacing	>120mm	axis to axis
	Electrical safety	EN 61010-1:2004	
COMPLIANCE	EMC	EN 61326:2002/A3:2004(U)	

10. OPERATION

10.1. Programming

Incorrect programming may cause incorrect read-out and uncontrolled output relay operations!

The meter has many user-selected programme settings. All settings may be done with front panel push-buttons. Set-points levels are programmed directly in normal mode. Other settings require entering programme mode. Programming menu is code protected.



To programming mode press **ESC** key for 2 seconds until "Code" message appear Then press: **ESC**, ▲, ▲, **ENT** combination. "Fn00" message should appear.

In programming menu several functions are available. Detailed function description is given in the table.

Use cursor buttons to navigate through the functions and ENT button to enter selected function. Numerical values should be set digit by digit. Flashing digit should be adjusted using cursor buttons and stored with ENT button.

All the settings are stored in non-volatile memory while leaving the programming menu.

Tab. 10.1 Button function in programming mode

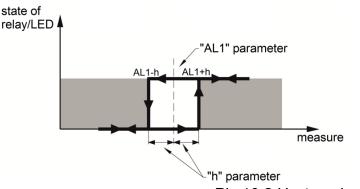
Button	Description	Comments
A	- scrolling up through menu functions and options - increasing numerical values	
▼	- scrolling down through menu functions and options - decreasing numerical values	
ESC	- ESCAPE - go to previous menu level	
ENT	- ENTER, access to function - selected value/option confirmation	

Tab. 10.2 Programming menu

Menu function	Description	Available options Factory setting		Comments
Fn00	input selection	I - 0-20mA current input active, U- 0-10V voltage input active	I	
Fn01	linearization points	2-16	2	2 - linear scale
Fn02	display scaling	P01 - Pnn scaling points -9.99 - 99.99 input value (with DP) -999 - 9999 display value	P01 : 00.00 : 0000 P02 : 20.00 : 2000	Define input value and display value for each scaling point-(1)
Fn03	decimal point	0000; 0.000; 00.00; 000.0	00.00	Leading zeros are suppressed
Fn04	display rounding	1, 2, 5, 10		1 - without rounding
Fn05	filter time- constant	0 – 20ms, 1 - 60ms, 2 - 120ms, 3 - 240ms, 4 - 480ms, 5 - 960ms, 6 - 1.92s, 7 – 3.84s, 8 - 7.68s, 9 - 15.36s		
Fn06	bargraph mode	3C - three colour		(2)
Fn07	set-point mode	AL1, AL2, AL3, AL4 H - high L - low A - alternate 1 - 9999 - hysteresis [display divisions]	AL1 : H : 1 AL2 : L : 1 AL3 : H : 1 AL4 : L : 1	(3)
Fn08	output scaling	P01 - zero (low) P02 - full scale -999 do 9999 meter's display value 03.00 to 21.00 [mA] output current	0000 : 4.00 2000 : 20.00	Define meter's display value and output current for both scaling points.

Fn09	all reset	Ecod (4)		Reset to factory setting
Fc01	serial comm. address	01 h - F7 h - address (000-247)	01	
Fc02	serial comm. speed	2.4, 4.8 , 9.6 , 19.2 kbps	9.6	
Fc03	serial comm. parity	no - no parity even - even parity odd - odd parity	even	

Remarks:


- (1) The meter is factory set to linear scale with two scaling points. If non-linear scale is needed the required number of scale points should be set in Fn01 function at first. Then, the input and display values for each point should be set. Doubled input values are automatically rejected. Scaling point values are automatically sorted by input values in ascending order, after each Fn02 function access.
- (2) In 1 colour mode the bargraph is green with red set-points.
 In 3 colour mode the central zone between AL3 and AL4 is green. Zones AL1 AL3 and AL2 AL4 are yellow. Zones above AL1 and below AL2 are red. Relation AL2<=AL4<=AL3<=AL1 should be true for proper colour zone display. Bargraph 0% indication corresponds to the lowest scaling point, while 100% corresponds to the highest scaling point of the digital display analog.
- (3) The set-point number is equal to relay number, excluding alternate mode. Overall hysteresis is equal to twice the value set in Fn07 function.
- (4) While "code" message appears, press ENT button four times.

	400		
Iah	1111	N/lotor's	programming example
ıαν.	IV.J	10161619	DIOUIAIIIIIIII EXAIIIDE

Parameter	Set value	Menu function	Settings
input type	current	Fn00	I
scaling points number	2	Fn01	2
input range	4-20mA	Fn02	P01:04.00:0000
display range	0-3000	11102	P02 : 20.00 : 3000
decimal point position	0.000	Fn03	0.000
rounding	none	Fn04	1
filter time constant	240ms	Fn05	3
AL1 "ON" level	>2500	(1)	AL1 : 2500
AL2 "ON" level	<1000	(1)	AL2: 1000
AL1 hysteresis	5	Fn07	AL1: H: 0005
AL2 hysteresis	10	FIIU7	AL2 : L : 0010
output current at zero display	5mA	- Fn08	P01 : 0000 : 05.00
output current at full scale (3000) display	19mA	FIIUO	P02 : 3000 : 19.00

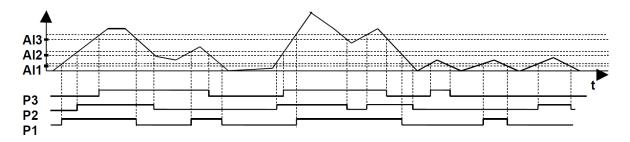
(1) - settings available in normal mode

AL1=2500 – set-point value AL1+h=2505 – turn-on level AL1-h=2495 – turn-off level h=5 – programmed hysteresis

Pic.10.2 Hysteresis definition

10.2. Set-point programming

Set-points are programmed in normal mode of the meter using front panel buttons. Press button for 3 seconds to enter AL1 or AL3 programming. Choose AL1 or AL3 with cursors and press ENT button. Adjust each flashing digit using ▼ buttons and store the value with ENT button. Similarly AL2 and AL4 are programmed while activated with ▼ button.


The relation AL2<=AL4<=AL3<=AL1 should be true in 3 colour bargraph mode for proper colour zone display.

10.3. Alternate output control

PMS970 has built-in "alternate output control" function, called also "alternate lead/lag control". While "A" option in Fn07 menu function is set, corresponding set-point belongs to "alternate output group". The group may consist of 2, 3 or 4 set-points and relays but the relays are not dedicated to certain set-points. Relays in the group are activated with special queue algorithm. After each ON/OFF sequence the relay is assigned to be the last in the queue. In this way the ON time of the grouped relays is equally shared. In the case of the failure of one of the controlled devices, remaining devices still work on all grouped set-points. The diagram below illustrates the principle of 3 level group operation.

Alternate output control is typically used for level control applications with cascaded pumps.

10.4. Error codes

Error code	Description	Possible reasons	Operation
ErrF	calibration memory error	-abnormal EMC condition - internal fault	Turn off the meter for 5 s. If message reappears after power-up contact the service.
InIF	calibration memory initialization		Turn off the meter for 5 s. If message reappears after power-up contact the service.
ErrU	-abnormal EMC condition -internal fault		Turn off the meter for 5 s. If message reappears after power-up press ENT button. Meter reads factory settings with momentarily displayed InIU message.
InIU	user memory initialization		If the message appears after each power-up contact the service.
display flashing	input under/overrange		-check signal source -check input circuitry
9999 (flashing)	display overrange	-incorrect meter settings -incorrect input connection -internal fault	-check signal source -check meter's scaling -check input circuitry
-999 (flashing)	display underrange	-incorrect meter settings -incorrect input connection -internal fault	-check signal source -check meter's scaling -check input circuitry

10.5. Serial communication

PMS-970 has serial communication option with RS-485 internal module installed. The meter works with Modbus RTU protocol as slave device.

Function 3 (register read) and function 16 (multiple registers write). The data exchanged with the meter are variable type "V" or parameters "P".

Parameters are also accessible from programming menu. Variables are read-only (R). Parameters are read-only type (R) or read/write type (R/W).

Variables and parameters are grouped for simplicity and functionality:

Group	Register range	Description		
1	400002-400003	digital read-out, decimal point position, general status, set-point status		
2	400004-400008	set-point values, output current		
3	400009-400015	bargraph read-out		
4	400033-400084	programming menu settings without serial port settigs		
5	400097-400099	serial port settings		
6	418435	Modbus firmware identification		

Data blocks exchanged with PMS970 should contain only registers specified in tables below. In other case 0x02 exception code (ILLEGA_DATA_ADDRESS) is returnem.

Modbus Function 16 limitations:

- 1. In response to (R) specified register write attempt, 0x02 exception code (ILLEGA DATA ADDRESS) is returned.
- 2. Registers from the range 40048-40080 must be sent in one frame. Register 40048 must contain the number of scaling points used. Following registers contain scaling points data. Each point definition requires two registers with input and read-out values. For two-point scaling next to 40048 register four registers and no more must be sent. Excessive data in the range of 40048-40080 causes 0x02 exception return. Unused set-point data fields in the meter are automatically cleared (filled with 25000 (0x61A8) control value).
- 3. Signal values in scaling data must be unique. In other case exception code 0x03 (ILLEGA DATA VALUE) is returned.
- 4. Scaling data transmitted to the meter must be sorted by input value in ascending order. In other case exception code 0x03 is returned.

Example - 2-point scaling - 4-20mA input with 0-1000 read-out:

Data to be sent in one frame: 400048: 2

400049: 400 400050: 0 400051: 2000 400052: 1000

During manual programming with front keys the meter returns exception code 0x06 (SLAVE_DEVICE_BUSY) and no other data. The same exception is returned during internal EEPROM write process.

PMS-970 Modbus register assignment:

Register number/address	narameter	Туре	Value range	Default value	Comments
400002/ 0x0001	Digital read-out	V (R)	-999 - 9999 (0xFC19- 0x270F)	-	
400003/ 0x0002	Status	V (R)	0-65535 (0x0000- 0xFFFF)		bit0 (LSB): PP=1 – manual programming in progress bit1: EAL=1 - set-point programming in progress bit2: WEE=1 - memory write in progress bit3: MIG=1 - display flashing bit4: UND=1 - input underrange bit5: OVR=1 - input overrange bit6: MBAR1=1 - bargraph LED01 flashing bit7: MBAR26=1 - bargraph LED26 flashing bit8: ALR1=1 - AL4 relay ON bit9: ALR2=1 - AL4 relay ON bit10: ALR3=1 - AL4 relay ON bit11: ALR4=1 - AL4 relay ON bit13,bit12:DPH,DPL – DP position (Fn03): 00 - "0000" 01 - "0.000" 11 - "0.000" 11 - "000.0" bit14: Input type: 0 - current 1 - voltage bit15: not used
400004/ 0x0003	Set-point 1 level	P (R/W)	-999 - 9999 (0xFC19- 0x270F)	1800 (0x0708)	AL1
400005/ 0x0004	Set-point 2 level	P (R/W)	-999 - 9999 (0xFC19- 0x270F)	200 (0x00C8)	AL2
400006/ 0x0005	Set-point 3 level	P (R/W)	-999 - 9999 (0xFC19- 0x270F)	1500 (0x05DC)	AL3

400007/ 0x0006	Set-point 4 level	P (R/W)	-999 - 9999 (0xFC19- 0x270F)	500 (0x01F4)	AL4
400008/ 0x0007	Output current	V (R)	-32768 - 32767 (0x8000- 0x7FFF)	-	*10 ⁻³ mA
400009/ 0x0008	Minimum read-out	P (R)	-999 - 9999 (0xFC19- 0x270F)	0 (0x0000)	
400100/ 0x0009	Maximum read-out	P (R)	-999 - 9999 (0xFC19- 0x270F)	2000 (0x07D0)	
400011/ 0x000A	Bargraph height	V (R)	0-27 (0x0000- 0x001B)	-	0 – Display underrange (LED01 flashing)27 - Display overrange (LED26 flashing)
400012/ 0x000B	Bargraph colour 0108	V (R)	0-65535 (0x0000- 0xFFFF)	-	Colour codes: 00 - off 01 - green 10 - red 11 - orange bit1,bit0: LED01(lowest) bit3,bit2: LED02 bit5,bit4: LED03 bit7,bit6: LED04 bit9,bit8: LED05 bit11,bit10: LED06 bit13,bit12: LED07 bit15,bit14: LED08
400013/ 0x000C	Bargraph colour 0916	V (R)	0-65535 (0x0000- 0xFFFF)	-	Colour codes: see above bit1,bit0: LED09 bit3,bit2: LED10 bit5,bit4: LED11 bit7,bit6: LED12 bit9,bit8: LED13 bit11,bit10: LED14 bit13,bit12: LED15 bit15,bit14: LED16
400014/ 0x000D	Bargraph colour 1724	V (R)	0-65535 (0x0000- 0xFFFF)	-	Colour codes: see above bit1,bit0: LED17 bit3,bit2: LED18 bit5,bit4: LED19 bit7,bit6: LED20 bit9,bit8: LED21 bit11,bit10: LED22 bit13,bit12: LED23 bit15,bit14: LED24
400015/ 0x000E	Bargraph colour 2532	V (R)	0-65535 (0x0000- 0xFFFF)	-	Colour codes: see above bit1,bit0: LED25 bit3,bit2: LED26 bit15-bit4: -

400033/ 0x0020	Identificat ion number	P (R)	0-65535 (0x0000- 0xFFFF)	-	0 – no numberavailable	
400034/ 0x0021	Actual scaling points number	P (R)	From 2 (0x0002) to Fn01 setting	2 (0x0002)	Actually defined In Fn02 number of saling points.	
400035/ 0x0022	Input type	P (R/W)	0 (0x0000) – current [mA] 1 (0x0001) – voltage [V]	0 (0x0000)	Fn00	
400036/ 0x0023	Decimal point position	P (R/W)	0x0000 - 0000 - 0x0001 - 0.000 - 0x0002 - 00.00 - 0x0003 - 000.0 -	2 (0x0002)	Fn03	
400037/ 0x0024	Read-out rounding	P (R/W)	1 (0x0001) - to 1 2 (0x0002) - to 2 5 (0x0005) - to 5 10 (0x000A) - to 10	1 (0x0001)	Fn04	
400038/ 0x0025	Filtering level	P (R/W)	0 - 9 (0x0000 - 0x0009)	2 (0x0002)	Fn05	
400039/ 0x0026	Bargraph colour mode	P (R/W)	1 (0x0001) - single colour 3 (0x0003) - tricolour	3 (0x0003)	Fn06	
400040/ 0x0027	AI 1 mode	P (R/W)	0x0000 - H 0x0001 - L 0x0002 - A	0 (0x0000)	Fn07 - AL1 set-point mode setting	
400041/ 0x0028	Al 2 mode	P (R/W)	_"_	1 (0x0001)	Fn07 – AL2 set-point mode setting	
400042/ 0x0029	Al 3 mode	P (R/W)	_"_	0 (0x0000)	Fn07 – AL3 set-point mode setting	
400043/ 0x002A	Al 4 mode	P (R/W)	_"_	1 (0x0001)	Fn07 – AL4 set-point mode setting	
400044/ 0x002B	Al 1 hysteresis	P (R/W)	1 - 9999 (0x0001 - 0x270F)	1 (0x0001)	Fn07 - AL1 set-point hysteresis	
400045/ 0x002C	Al 2 hysteresis	P (R/W)	_"_	1 (0x0001)	Fn07 – AL2 set-point hysteresis	
400046/ 0x002D	Al 3 hysteresis	P (R/W)	_"_	1 (0x0001)	Fn07 – AL3 set-point hysteresis	
400047/ 0x002E	Al 4 hysteresis	P (R/W)	_"_	1 (0x0001)	Fn07 – AL4 set-point hysteresis	

400048/ 0x002F	Scaling points number	P (R/W)	2-16 (0x0002 - 0x0010)	2 (0x0002)	Fn01
400049/ 0x0030	P01 input value	P (R/W)	-999 - 9999 (0xFC19- 0x270F)	0 (0x0000)	Fn02:P01
400050/ 0x0031	P01 read- out value	P (R/W)	-999 - 9999 (0xFC19- 0x270F)	0 (0x0000)	Fn02:P01
400051/ 0x0032	P02 input value	P (R/W)	-999 - 9999 (0xFC19- 0x270F)	2000 (0x07D0)	Fn02:P02
400052/ 0x0033	P02 read- out value	P (R/W)	-999 - 9999 (0xFC19- 0x270F)	2000 (0x07D0)	Fn02:P02
400053/ 0x0034	P03 input value	P (R/W)	-999 - 9999 (0xFC19- 0x270F)	25000 (0x61A8)	Fn02:P03 Initial value for unused point
400054/ 0x0035	P03 read- out value	P (R/W)	-999 - 9999 (0xFC19- 0x270F)	25000 (0x61A8)	Fn02:P03
400055/ 0x0036	P04 input value	P (R/W)	-999 - 9999 (0xFC19- 0x270F)	25000 (0x61A8)	Fn02:P04
400056/ 0x0037	P04 read- out value	P (R/W)	-999 - 9999 (0xFC19- 0x270F)	25000 (0x61A8)	Fn02:P04
400057/ 0x0038	P05 input value	P (R/W)	-999 - 9999 (0xFC19- 0x270F)	25000 (0x61A8)	Fn02:P05
400058/ 0x0039	P05 read- out value	P (R/W)	-999 - 9999 (0xFC19- 0x270F)	25000 (0x61A8)	Fn02:P05
400059/ 0x003A	P06 input value	P (R/W)	-999 - 9999 (0xFC19- 0x270F)	25000 (0x61A8)	Fn02:P06
400060/ 0x003B	P06 read- out value	P (R/W)	-999 - 9999 (0xFC19- 0x270F)	25000 (0x61A8)	Fn02:P06
400061/ 0x003C	P07 input value	P (R/W)	-999 - 9999 (0xFC19- 0x270F)	25000 (0x61A8)	Fn02:P07
400062/ 0x003D	P07 read- out value	P (R/W)	-999 - 9999 (0xFC19- 0x270F)	25000 (0x61A8)	Fn02:P07
400063/ 0x003E	P08 input value	P (R/W)	-999 - 9999 (0xFC19- 0x270F)	25000 (0x61A8)	Fn02:P08
400064/ 0x003F	P08 read- out value	P (R/W)	-999 - 9999 (0xFC19- 0x270F)	25000 (0x61A8)	Fn02:P08

400065/	P09 input	P (R/W)	-999 - 9999	25000	Fn02:P09
0x0040	value	1 (1000)	(0xFC19-	(0x61A8)	11102.1 09
00040	value		•	(UXOTAO)	
400000/	D00	D (DAA()	0x270F)	05000	F:-00:D00
400066/		P (R/W)	-999 - 9999	25000	Fn02:P09
0x0041	out value		(0xFC19-	(0x61A8)	
			0x270F)		
400067/	P10 input	P (R/W)	- 999 - 9999	25000	Fn02:P10
0x0042	value		(0xFC19-	(0x61A8)	
			0x270F)		
400068/	P10 read-	P (R/W)	- 999 - 9999	25000	Fn02:P10
0x0043	out value	,	(0xFC19-	(0x61A8)	
onco io			0x270F)	(6)(6)	
400069/	P11 input	P (R/W)	-999 - 9999	25000	Fn02:P11
	•	r (IVVV)			11102.711
0x0044	value		(0xFC19-	(0x61A8)	
1000=01		- (- aa)	0x270F)		5 00 5/4
400070/		P (R/W)	- 999 - 9999	25000	Fn02:P11
0x0045	out value		(0xFC19-	(0x61A8)	
			0x270F)		
400071/	P12 input	P (R/W)	-999 - 9999	25000	Fn02:P12
0x0046	value [*]	, ,	(0xFC19-	(0x61A8)	
			`0x270F)	,	
400072/	P12 read-	P (R/W)	- 999 - 9999	25000	Fn02:P12
0x0047	out value	1 (1000)	(0xFC19-	(0x61A8)	11102.1 12
0,0047	out value		0x270F)	(UXUIAU)	
400072/	D12 input	D (D(M)		25000	Fn02:P13
	P13 input	P (R/W)	-999 - 9999	25000	F1102.P13
0x0048	value		(0xFC19-	(0x61A8)	
			0x270F)		
400074/		P (R/W)	- 999 - 9999	25000	Fn02:P13
0x0049	out value		(0xFC19-	(0x61A8)	
			0x270F)		
400075/	P14 input	P (R/W)	- 999 - 9999	25000	Fn02:P14
0x004A	value		(0xFC19-	(0x61A8)	
			`0x270F)	,	
400076/	P14 read-	P (R/W)	- 999 - 9999	25000	Fn02:P14
0x004B	out value	((, , , ,)	(0xFC19-	(0x61A8)	
OXOG IB	out varao		0x270F)	(0)(0)	
400077/	P15 input	P (R/W)	-999 - 9999	25000	Fn02:P15
0x004C	value	1- (17/4/)	-999 - 9999 (0xFC19-	(0x61A8)	THUZ.F IJ
00040	value		•	(UXGTAG)	
4000701	D45	D /D / A / \	0x270F)	05000	F=02-D45
400078/		P (R/W)	-999 - 9999	25000	Fn02:P15
0x004D	out value		(0xFC19-	(0x61A8)	
			0x270F)		
400079/	P16 input	P (R/W)	- 999 - 9999	25000	Fn02:P16
0x004E	value		(0xFC19-	(0x61A8)	
			Ox270F)	,	
400080/	P16 read-	P (R/W)	-999 - 9999	25000	Fn02:P16
0x004F	out value	,	(0xFC19-	(0x61A8)	
0,,00			0x270F)	(57.517.6)	
400081/	Read-out for	P (R/W)	-999 - 9999	0 (0x0000)	Fn08:P01
0x0050	low linear	1 (17/VV)		0 (00000)	THOO.FUT
UCUUSU	output		(0xFC19-		
	σαιραί		0x270F)		

400082/ 0x0051	Read-out linear output	P (R/W)	-999 - 9999 (0xFC19- 0x270F)	2000 (0x07D0)	Fn08:P02
400083/ 0x0052	Low linear output value	P (R/W)	-999 - 9999 (0xFC19- 0x270F)	400 (0x0190)	Fn08:P01 (default 4.00mA)
400084/ 0x0053	High linear output value	P (R/W)	-999 - 9999 (0xFC19- 0x270F)	2000 (0x07D0)	Fn08:P02 (default 20.00mA)
400097/ 0x0060	AdresSla ve	P (R)	1 - 247 (0x0001- 0x00F7)		Fc01
400098/ 0x0061	Baude rate	P (R)	3 (0x0003) - 2400bps 4 (0x0004) - 4800bps 5 (0x0005) - 9600bps 6 (0x0006) - 19200bps	5 (0x0005)	
0x0062	Parity	P (R)	0 (0x0000) – no parity 1 (0x0001) - even parity 2 (0x0002) - odd parity	1 (0x0001)	
418435/ 0x4802	ModbusFi rmwareID	P (R)	10000 (0x2710)		

10.6. Display test

PMS970 has special test procedure for LED display, relays and version check. The test is initiated when the meter is powered-up with key pressed. LED segments are lighted-up in following cycle:

- four digit meter version code,
- digital display (all segments simultaneously),
- alarm leds with output relays activation,
- bargraph green (all segments simultaneously),
- bargraph red (all segments simultaneously).

The **ENT** key toggles between simultaneous and single segment activation during test. **ESC** key closes the test.

11. REVISION HISTORY

VERSION	MODBUS FIRMWARE ID	DATE	CHANGES INFO
2.01		05.2004	
3.00		12.2004	serial communications addend MODBUS RTU
3.05		04.2005	3.00 fixed, display test added
3.06	10000	05.2005	ModbusFirmwareID register added
5.00		07.2018	universal power supply 20 – 250V AC/DC

12. INSPECTION

12.1. PERIODICAL INSPECTION

Periodical inspection must be conducted according to standards in force. While inspecting, check the condition of electrical connections on clamps (firmness of connections) and the stability of meter fixing.

12.2. NON-PERIODICAL INSPECTION

If the meter is exposed to mechanical damage, electrical overvoltage or it works improperly – conduct inspection as necessary.

If there is no signal on the transmission line or signal value is incorrect, check the condition of the cable, the condition of connections on clamps, etc. Check if the power voltage value and load resistance is correct.

If the line is functional, check the operation of the meter.

13. SCRAPPING AND DISPOSAL

Used or damaged meters must be scrapped according to EU Directive ((2012/19/EU) on used electrical and electronic equipment, or returned to the producer.

14. ADDITIONAL INFORMATION

The manufacturer retains the right to implement structural and technological alterations that do not impair the meter's parameters.